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Abstract 

One way to quantify the degree to which a serial chain is in poor condition is to look at its Generalized Inertia Matrix (GIM) condition 

number. However, it is computationally costly to calculate the condition number. Therefore, this research looks at several methods of 

estimating the condition number, especially for a very long serial-chain. This is done by looking at the GIM's diagonal components. 

Scaled using an initial estimate of the condition number, the ratio of the GIM's greatest and smallest diagonal elements is found to 

closely reflect the condition number. This greatly streamlines the procedure for identifying GIM MA conditioning, which might be used 

to determine the system's stability. 

 

. Introduction 

For modelling and control purposes, the GIM of a 

multibody system is a crucial function of its joint 

variables. Specifically, inadequate training of the 

GIM leads to errors in forward dynamics [1] and 

subpar joint control ability [2]. That's why the 

condition number is such a useful tool for assessing 

the degree to which the GIM is in poor shape [2]. 

The condition number is the ratio of the greatest 

and lowest singular values if norm-2 definition [3] 

is applied. Since the GIM is symmetric and 

positive-definite, its condition number is just the 

ratio of its largest and smallest eigenvalues [3]. 

However, computing the condition number using 

eigenvalues is computationally highly costly, 

despite the fact that it is extensively used as a 

means to measure ill-conditioning of the 

GIM.Thereby, huge computational savings may be 

realized if the GIM's health can be determined 

using any other attribute of the GIM. To the best of 

our knowledge, such non-traditional methods were 

seldom mentioned in published works. It is 

interesting to note that the pivot ratio, defined as 

the ratio of the largest to the smallest pivot element, 

may be used to foretell instability, as shown by 

Mitra and Klein [4] in 1975. They implemented the 

idea in electromagnetics integral equations. 

Nonetheless, it became clear throughout the course 

of this investigation that pivot cannot be relied 

upon to accurately predict the trajectory of the 

condition number. We use the ratio of the largest to 

smallest diagonal elements of the GIM as a 

measure of ill-conditioning of the GIM because 1) 

the trace of GIM is equal to the sum of eigenvalues, 

and 2) each diagonal element of the GIM carries  
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the knowledge of the system ahead of the body 

corresponding to the index of the diagonal element. 

For the purpose of brevity, we shall refer to this 

proportion as the diagonal ratio from here on. The 

GIM's constituents are easily accessible as a by-

product of either inverse or forward dynamics 

techniques [1], therefore the diagonal ratio may be 

computed without any further work. We used the 

diagonal ratio to condition number correlation to 

determine poor conditioning. Scaled diagonal ratio 

is then implemented later on. The remainder of the 

paper is laid out as follows: Section 2 introduces 

GIM ill-conditioning. Section 3 introduces the GIM 

and its key features, while Section 4 offers a 

number of numerical examples. Conclusions are 

presented in Section 5. 

 

Preparation of the GIM 

As stated in [5], a tree-structured multibody 

system's equations of motion may be modelled as a 

 

When GIM (represented by I), a generalized 

coordinate vector (generalized coordinates), a 

matrix of convective inertia components 

(represented by C), and a generalized external force 

vector (represented by) are all given. A poorly-

conditioned GIM may have repercussions on a 

system's control performance, as shown in [2]. 

Therefore, the ill-conditioning metric may be 

useful for making adjustments in simulation or 

control. However, this is beyond the purview of the 

research; instead, we concentrate on efficient 

estimate of ill-conditioning, which may be used as 

a reference. Here, we merely utilize simulation to 

show how the GIM degrades with time. 

Solving a set of linear algebraic equations in joint 

accelerations is the first step in simulating a 

multibody system. The second step is numerical 

integration. The q-valued joint accelerations are 

calculated using Eq. (1). 

 

Since the GIM may be factorized using LU or 

Cholesky decomposition [3], and then q is 

computed via backward and forward replacements 

[3], it is not necessary to do an explicit inversion of 

the GIM, I, in order to solve for q. When the GIM 

is ill-conditioned, however, even moderate changes 

in the system's solutions might have a significant 

impact. An ill-conditioned matrix is one that is very 

near to its singularity [3]. The solution is perturbed 

by even a tiny modification in the right-hand side 

of Eq. (2). 

 

Resulting in the relative error [3] 

 

where the GIM norm is denoted by kick, and (I) = I 

1 The condition number kIk of an equation is the 

multiplier applied to the answer q as a result of a 

modest change in the right-hand side. If the GIM 

has a high condition number, it is poorly 

conditioned or on the brink of singularity. The GIM 

condition number is determined from if we choose 

norm-2 [3]. 

 

, with the maximum and lowest singular values of 

the GIM denoted by max(I) and min(I), 

respectively. Due to the GIM's symmetry and 

positive definiteness, its singular values are 

equivalent to the eigenvalues, and Eq. (5) may be 

rewritten as 

 

where the largest and smallest eigenvalues of the 

GIM are respectively denoted by max and min. It is 

important to note that the worst condition numbers 

for serial multibody systems with identical links or 

homogeneous rods are on the order of O (4n 4) [1], 

where n is the total number of connections. 

Therefore, there is a considerable probability of 

accuracy loss in the calculation of the joint 

accelerations as n increases. In order to offer a 

reliable solution, a numerical integrator may need 

to use very tiny step sizes. The term "numerical" 

might be used to describe this occurrence. 

rigidity [6]. Fig. 1 depicts a hypothetical scenario in 

which a 4-link serial chain composed of identical 

links is explored, with the chain traveling 

downwards under the force of gravity to provide 

some perspective on the phenomenon of poor 

conditioning. Assume that each link is a 

homogenous, thin rod of length l = 1m and mass m 

= 2.2 kg. For the state q = q = 0, we get the GIM I 

and the forces as 



 
 
 

 

Fig. 1. A 4-link chain with only revolute joints 

 

where "sym" indicates GIM symmetry. 

Accelerations at the joints may be solved for in the 

following way: 

 

In Eq. (7), the GIM has a condition number of 2(I) 

=1074, which is rather large for such a compact 

system. A small sample size is required for 

observing the impact of 

Rounding errors in are regarded to be perturbations 

of on q. 

 

 

 

Thus, the very large percentage changes in 

accelerations q1, q 2, q 3, and q4 of 7%, 14%, 42%, 

and 55% are the consequence of relatively modest 

percentage changes in 1, 2, 3, and 4 of 0.69%, 

0.02%, 0.23%, and 0.23%, respectively. With 

larger systems, this shift will be much more 

noticeable. As a result, it is crucial to have a good 

assessment of how badly conditioned the GIM is in 

the first place. In [5, 7], it was shown that the GIM, 

developed by using the idea of the Decoupled 

Natural Orthogonal Complement (DeNOC) 

matrices, retains the data of mass and inertia 

characteristics in a fairly systematic way. 

Therefore, the GIM's components might provide in-

depth knowledge about poor conditioning with 

further investigation. As a result, we'll move on to a 

discussion of the GIM's most salient features. 

The GIM's Distinctive Features 

Following is a representation for a serial chain's 

GIM. 

 

In this case, Iij is the (i, j) the GIM element. One 

may use [7] as an analytic expression for the (i, j) 

the element of the GIM. 

 

For example, consider Eq. (11), where Ai, j and pj 

are the twist-propagation matrix and motion 

propagation vectors, respectively [7], and M I is the 

mass matrix of composite body, which contains the 

mass and inertia properties of the system consisting 

of all rigidly connected links upstream of the I the 

link, including itself. This is calculated using the 

mass matrix Mi of the itch connection. 

 

where for the terminal link M˜ n = Mn. The 

structure of the mass matrix of a composite body 

may vary with the choice of independent 

generalized coordinates. However, the present 

choice is based on a popular choice for the serial-

type systems, i.e., relative coordinates. It is worth 

noting that the GIM is a positive definite matrix, 

and hence, the diagonal terms are always greater 

than zero, i.e., p T I M˜ ipi>0 for I =1, . . ., n. Using 

the analytical expressions in Eq. (11), the GIM of 

the 4-link planar chain, shown in Fig. 1, is obtained 

as 

 



 
 
 
In Eq. (14), M˜ 4 = M4 represents the mass and 

inertia properties of the 4 the link only, whereas, 

M˜ 1 represents the mass and inertia properties of 

all the links, enclosed by the dotted line in Fig. 1. 

Therefore, the term p T 1M˜ 1p1 is larger than any 

other diagonal term and p T 4M˜ 4p4 is the smallest 

of all. This is also evident from Eq. (7). Moreover, 

it obvious that with the increase in the number of 

links, the term p T 1M˜ 1p1 will become larger and 

larger, whereas p T nm. ˜npn will remain 

unaffected. Moreover, the ‘trace’ of the GIM, i.e., 

the sum of the diagonal elements, is related to the 

eigenvalues [3] by 

 

The above two facts motivated us to compare the 

ratio of the smallest and highest eigenvalues, i.e., 

condition number in Eq. (6), with the ratio of the 

largest to smallest diagonal elements of the GIM. 

These ratios are compared using several numerical 

examples in the next section. 

Numerical Illustrations  

As introduced in Section 1, the diagonal ratio is 

defined as the ratio of the largest to smallest 

diagonal elements of the GIM and will be denoted 

as δ(I) = I11/Inn hereafter. The eigenvalues and the 

diagonal elements of the GIM for the swinging 4-

link chain are plotted in Figs. 2(a-b). It can be seen 

that the element I11 > (I22, I33, I44) follows the 

trend of the highest eigenvalue λ1 throughout the 

simulation period. Since, I44 is the smallest 

element, δ(I) = I11/I44 forms the diagonal ratio, 

Fig. 2(d). Comparison with the condition 

 

Figure 2: The GIM of a 4-link chain has a variety 

of features. 

Figure 2(c) demonstrates that the diagonal ratio 

accurately represents the underlying trend of the 

condition number, given as 2 = 1/4. 

 

Then, Fig. 3 compares 10-link and 20-link serial 

chains with identical links based on their diagonal 

ratio and condition number. Figure 3 shows that the 

maximum condition number and the diagonal ratio 

both grow as the network size grows. The diagonal 

ratio may also be used to represent the general 

trend of the condition number, which is true for 

both 10- and 20-link chains. Similarly, the worst 

condition number for a serial-chain with identical 

links is approximately of O (4n 4) [1], as shown in 

Figs. 2(c), 3(a), and 3(c). The ratio of the biggest 

pivot element to the smallest produced from 

Gaussian elimination [3] of the GIM was shown to 

be a useful indicator of ill-conditioning, as 

discussed in [4]. To further illustrate that the pivot 

ratio does not represent the trend of the condition 

number, Fig. 4 also displays the pivot ratios of 10- 

and 20-link chains. As a result, serial-chain systems 

cannot utilize the pivot ratio to assess the degree to 

which the GIM is ill-conditioned. While the 

condition number does track the diagonal ratio, the 

two magnitudes are still somewhat different. The 

concept of a scaled diagonal ratio is presented to 

help get a rough idea of how big the condition 

number is. It's easy to see why the scaled diagonal 

ratio is just the diagonal ratio multiplied by a 

constant. 

 

 

Fig. 4. Pivot ratios for 10- and 20- link chains 
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According to Fig. 5, s(I) not only accurately 

predicts the condition number but also accurately 

captures its trend. This demonstrates that ill-



 
 
 
conditioning of the GIM may be estimated via 

simulation using the scaled diagonal ratio s(I) 

without the need for costly calculation of the 

condition number. 

Conclusions 

In this study, we provide a unique approach to 

simulating ill-conditioning of the GIM and then 

estimating its severity. The ratio of the greatest to 

the smallest is used in this technique. 

 

Condition number and scaled diagonal ratio for 4-, 

10-, and 20-link chains in Fig. 5. 

Generalized Inertia Matrix (GIM) diagonal 

elements multiplied by a constant factor. Multiple 

numerical examples are provided to demonstrate 

the method's efficacy. To make a highly secure 

choice regarding the GIM's poor condition, we may 

use the diagonal ratio, which records the trend of 

the condition number, and scale it using the 

beginning values of the condition number, which 

then gives the magnitude of the condition number. 

The suggested technique not only simplifies and 

expedites the estimate of bad conditions, but it also 

provides a useful tool for future work in improving 

control performance and defining adaptive 

tolerances for the forward dynamics issue. 
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